-
1 thermionic arc
термоионная дуга
термический дуговой разряд
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > thermionic arc
-
2 thermionic arc
-
3 thermionic arc
-
4 thermionic arc
-
5 thermionic arc
-
6 thermionic arc
-
7 ARC
- электрическая дуга
- формуляр учёта реагирования на аварийную сигнализацию
- образовывать (электрическую) дугу
- Корпоративный исследовательский центр
- класс полномочий доступа
- дуговой разряд
- вычислительная сеть для распределенной обработки данных
- автоматическое регулирование соотношения
- автоматическое повторное включение
- автоматическое дистанционное управление
автоматическое дистанционное управление
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]Тематики
- электротехника, основные понятия
EN
автоматическое повторное включение
АПВ
Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
[ ГОСТ Р 52565-2006]
автоматическое повторное включение
АПВ
Автоматическое включение аварийно отключившегося элемента электрической сети
[ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]
(автоматическое) повторное включение
АПВ
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]EN
automatic reclosing
automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
[IEC 61936-1, ed. 1.0 (2002-10)]
[IEV 604-02-32]
auto-reclosing
the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
[IEC 62271-100, ed. 2.0 (2008-04)]
auto-reclosing (of a mechanical switching device)
the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
[IEV number 441-16-10]FR
réenclenchement automatique
refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
[IEC 61936-1, ed. 1.0 (2002-10)]
[IEV 604-02-32]
refermeture automatique
séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
[IEC 62271-100, ed. 2.0 (2008-04)]
refermeture automatique (d'un appareil mécanique de connexion)
séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
[IEV number 441-16-10]
Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает. АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.
Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.
Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
[ БСЭ]
НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ
Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]
АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)
3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.
Должно предусматриваться автоматическое повторное включение:
1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;
2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);
3) трансформаторов (см. 3.3.26);
4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).
Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.
Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.
3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:
1) отключении выключателя персоналом дистанционно или при помощи телеуправления;
2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;
3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.
Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.
Устройства АПВ должны выполняться с автоматическим возвратом.
3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.
Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).
Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.
3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.
3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.
В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.
3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.
Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.
С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).
3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.
Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.
При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).
В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.
3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.
3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):
а) быстродействующее ТАПВ (БАПВ)
б) несинхронное ТАПВ (НАПВ);
в) ТАПВ с улавливанием синхронизма (ТАПВ УС).
Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.
Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.
3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.
Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.
Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.
3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:
а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;
б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;
в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.
При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.
При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.
3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.
Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).
Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.
Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.
При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).
3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.
3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:
а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;
б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;
в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;
г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;
д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.
Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.
Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.
Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.
3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.
3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.
3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:
1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):
несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);
АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).
Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;
2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.
3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.
Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.
3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.
3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.
3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.
Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.
3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.
Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.
3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:
1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);
2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.
При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).
Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.
3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).
Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.
3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.
3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.
3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).
Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.
3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
[ ПУЭ]Тематики
- высоковольтный аппарат, оборудование...
- релейная защита
- электроснабжение в целом
Обобщающие термины
Синонимы
Сопутствующие термины
- АПВ воздушных линий
- АПВ смешанных (кабельно-воздушных) линий
- двукратное АПВ
- неуспешное АПВ
- однократное АПВ
- трехкратное АПВ
- цикл АПВ
EN
- AR
- ARC
- auto-reclosing
- automatic reclosing
- automatic recluse
- autoreclosing
- autoreclosure
- reclose
- reclosing
- reclosure
DE
- automatische Wiedereinschaltung
- Kurzunterbrechung
- selbsttätiges Wiederschließen (eines mechanischen Schaltgerätes)
- Wiedereinschaltung, automatische
FR
автоматическое регулирование соотношения
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
вычислительная сеть для распределенной обработки данных
Разработана фирмой Datapoint Corp. (США).
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]Тематики
EN
дуговой разряд
Самостоятельный электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов и который характеризуется малым катодным падением потенциала (порядка или меньше ионизационного потенциала газа), а также интенсивным испусканием электронов катодом в основном благодаря термоэлектронной или электростатической эмиссии.
[ ГОСТ 13820-77]
дуговой разряд
-
[Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]Тематики
EN
Корпоративный исследовательский центр
(компании «Бэбкок энд Вилкокс», США)
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
класс полномочий доступа
—
[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]Тематики
EN
образовывать (электрическую) дугу
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]Тематики
- электротехника, основные понятия
EN
формуляр учёта реагирования на аварийную сигнализацию
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
электрическая дуга
-
[Интент]EN
(electric) arc
self-maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission
[IEV ref 121-13-12]FR
arc (électrique), m
conduction gazeuse autonome dans laquelle la plupart des porteurs de charge sont des électrons produits par émission électronique primaire
[IEV ref 121-13-12]-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
[ ГОСТ Р 50571. 4-94 ( МЭК 364-4-42-80)] -
Средства индивидуальной защиты от теплового воздействия электрической дуги...
[Технический регламент о безопасности средств индивидуальной защиты] -
Опасное и вредное воздействия на людей электрического тока, электрической дуги и электромагнитных полей проявляются в виде электротравм и профессиональных заболеваний.
[ ГОСТ 12.1.019-79] -
сопротивление электрической дуги в месте КЗ
[ ГОСТ 28249-93 ] -
... способствовать гашению электрической дуги
-
Аппараты управления, имеющие электрическую дугу на силовых контактах при
нормальной работе ( пускатели, станции управления), должны проходить испытания при коммутации нагрузки.
[ ГОСТ Р 51330.20-99]
An electric arc is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air. A synonym is arc discharge. An arc discharge is characterized by a lower voltage than a glow discharge, and relies on thermionic emission of electrons from the electrodes supporting the arc. The phenomenon was first described by Vasily V. Petrov, a Russian scientist who discovered it in 1802. An archaic term is voltaic arc as used in the phrase " voltaic arc lamp".
[http://en.wikipedia.org/wiki/Electric_arc]Параллельные тексты EN-RU
In the last years a lot of users have underlined the question of safety in electrical assemblies with reference to one of the most severe and destructive electrophysical phenomenon: the electric arc.
[ABB]В последние годы многие потребители обращают особое внимание на безопасность НКУ, связанную с чрезвычайно разрушительным и наиболее жестко действующим электрофизическим явлением - электрической дугой.
[Перевод Интент]Тематики
- электротехника, основные понятия
Действия
Сопутствующие термины
EN
DE
- elektrischer Lichtbogen, m
- Lichtbogen, m
FR
Англо-русский словарь нормативно-технической терминологии > ARC
-
8 arc
арка
1. в строительной механике - плоская распорная система, имеющая форму кривого стержня, обращенного выпуклостью в направлении противоположном направлению действия основной нагрузки
[Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]
2. несущая строительная конструкция, имеющая форму криволинейного бруса, перекрывающего проём в стене или пролёт между двумя опорами
3. сооружение, в основном мемориального или декоративного типа, имеющее форму арки или арочных ворот
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]Тематики
- архитектура, основные понятия
- строительная механика, сопротивление материалов
EN
DE
FR
электрическая дуга
-
[Интент]EN
(electric) arc
self-maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission
[IEV ref 121-13-12]FR
arc (électrique), m
conduction gazeuse autonome dans laquelle la plupart des porteurs de charge sont des électrons produits par émission électronique primaire
[IEV ref 121-13-12]-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
[ ГОСТ Р 50571. 4-94 ( МЭК 364-4-42-80)] -
Средства индивидуальной защиты от теплового воздействия электрической дуги...
[Технический регламент о безопасности средств индивидуальной защиты] -
Опасное и вредное воздействия на людей электрического тока, электрической дуги и электромагнитных полей проявляются в виде электротравм и профессиональных заболеваний.
[ ГОСТ 12.1.019-79] -
сопротивление электрической дуги в месте КЗ
[ ГОСТ 28249-93 ] -
... способствовать гашению электрической дуги
-
Аппараты управления, имеющие электрическую дугу на силовых контактах при
нормальной работе ( пускатели, станции управления), должны проходить испытания при коммутации нагрузки.
[ ГОСТ Р 51330.20-99]
An electric arc is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air. A synonym is arc discharge. An arc discharge is characterized by a lower voltage than a glow discharge, and relies on thermionic emission of electrons from the electrodes supporting the arc. The phenomenon was first described by Vasily V. Petrov, a Russian scientist who discovered it in 1802. An archaic term is voltaic arc as used in the phrase " voltaic arc lamp".
[http://en.wikipedia.org/wiki/Electric_arc]Параллельные тексты EN-RU
In the last years a lot of users have underlined the question of safety in electrical assemblies with reference to one of the most severe and destructive electrophysical phenomenon: the electric arc.
[ABB]В последние годы многие потребители обращают особое внимание на безопасность НКУ, связанную с чрезвычайно разрушительным и наиболее жестко действующим электрофизическим явлением - электрической дугой.
[Перевод Интент]Тематики
- электротехника, основные понятия
Действия
Сопутствующие термины
EN
DE
- elektrischer Lichtbogen, m
- Lichtbogen, m
FR
Франко-русский словарь нормативно-технической терминологии > arc
-
9 arc électrique
электрическая дуга
-
[Интент]EN
(electric) arc
self-maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission
[IEV ref 121-13-12]FR
arc (électrique), m
conduction gazeuse autonome dans laquelle la plupart des porteurs de charge sont des électrons produits par émission électronique primaire
[IEV ref 121-13-12]-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
[ ГОСТ Р 50571. 4-94 ( МЭК 364-4-42-80)] -
Средства индивидуальной защиты от теплового воздействия электрической дуги...
[Технический регламент о безопасности средств индивидуальной защиты] -
Опасное и вредное воздействия на людей электрического тока, электрической дуги и электромагнитных полей проявляются в виде электротравм и профессиональных заболеваний.
[ ГОСТ 12.1.019-79] -
сопротивление электрической дуги в месте КЗ
[ ГОСТ 28249-93 ] -
... способствовать гашению электрической дуги
-
Аппараты управления, имеющие электрическую дугу на силовых контактах при
нормальной работе ( пускатели, станции управления), должны проходить испытания при коммутации нагрузки.
[ ГОСТ Р 51330.20-99]
An electric arc is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air. A synonym is arc discharge. An arc discharge is characterized by a lower voltage than a glow discharge, and relies on thermionic emission of electrons from the electrodes supporting the arc. The phenomenon was first described by Vasily V. Petrov, a Russian scientist who discovered it in 1802. An archaic term is voltaic arc as used in the phrase " voltaic arc lamp".
[http://en.wikipedia.org/wiki/Electric_arc]Параллельные тексты EN-RU
In the last years a lot of users have underlined the question of safety in electrical assemblies with reference to one of the most severe and destructive electrophysical phenomenon: the electric arc.
[ABB]В последние годы многие потребители обращают особое внимание на безопасность НКУ, связанную с чрезвычайно разрушительным и наиболее жестко действующим электрофизическим явлением - электрической дугой.
[Перевод Интент]Тематики
- электротехника, основные понятия
Действия
Сопутствующие термины
EN
DE
- elektrischer Lichtbogen, m
- Lichtbogen, m
FR
Франко-русский словарь нормативно-технической терминологии > arc électrique
-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
-
10 thermionic ion source
English-Russian dictionary on nuclear energy > thermionic ion source
-
11 electric arc
вольтова дуга
—
[ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
EN
дуговой разряд
Самостоятельный электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов и который характеризуется малым катодным падением потенциала (порядка или меньше ионизационного потенциала газа), а также интенсивным испусканием электронов катодом в основном благодаря термоэлектронной или электростатической эмиссии.
[ ГОСТ 13820-77]
дуговой разряд
-
[Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]Тематики
EN
электрическая дуга
-
[Интент]EN
(electric) arc
self-maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission
[IEV ref 121-13-12]FR
arc (électrique), m
conduction gazeuse autonome dans laquelle la plupart des porteurs de charge sont des électrons produits par émission électronique primaire
[IEV ref 121-13-12]-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
[ ГОСТ Р 50571. 4-94 ( МЭК 364-4-42-80)] -
Средства индивидуальной защиты от теплового воздействия электрической дуги...
[Технический регламент о безопасности средств индивидуальной защиты] -
Опасное и вредное воздействия на людей электрического тока, электрической дуги и электромагнитных полей проявляются в виде электротравм и профессиональных заболеваний.
[ ГОСТ 12.1.019-79] -
сопротивление электрической дуги в месте КЗ
[ ГОСТ 28249-93 ] -
... способствовать гашению электрической дуги
-
Аппараты управления, имеющие электрическую дугу на силовых контактах при
нормальной работе ( пускатели, станции управления), должны проходить испытания при коммутации нагрузки.
[ ГОСТ Р 51330.20-99]
An electric arc is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air. A synonym is arc discharge. An arc discharge is characterized by a lower voltage than a glow discharge, and relies on thermionic emission of electrons from the electrodes supporting the arc. The phenomenon was first described by Vasily V. Petrov, a Russian scientist who discovered it in 1802. An archaic term is voltaic arc as used in the phrase " voltaic arc lamp".
[http://en.wikipedia.org/wiki/Electric_arc]Параллельные тексты EN-RU
In the last years a lot of users have underlined the question of safety in electrical assemblies with reference to one of the most severe and destructive electrophysical phenomenon: the electric arc.
[ABB]В последние годы многие потребители обращают особое внимание на безопасность НКУ, связанную с чрезвычайно разрушительным и наиболее жестко действующим электрофизическим явлением - электрической дугой.
[Перевод Интент]Тематики
- электротехника, основные понятия
Действия
Сопутствующие термины
EN
DE
- elektrischer Lichtbogen, m
- Lichtbogen, m
FR
электрическая дуга
Один из типов самостоят. электрич. разряда в газах или парах, использ. для плавки металлов (дуговая печь) и восстановления их из руд (рудновосстановит. печь). Явление открыто в 1802 г. рус. ученым В. В. Петровым, описавшим осн. св-ва э. д.
Темп-pa анода обычно выше темп-ры катода, что используют в дуговых печах пост. тока при прямой полярности э. д. (электрод-катод, нагреваемый металл — анод). Темп-pa столба свободно-горящей э.д. достигает 5-10 тыс. К.
Э. д. для нагрева и расплавления металла при сварке наз. сварочной д.
[ http://metaltrade.ru/abc/a.htm]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > electric arc
-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
-
12 voltaic arc
дуговой разряд
Самостоятельный электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов и который характеризуется малым катодным падением потенциала (порядка или меньше ионизационного потенциала газа), а также интенсивным испусканием электронов катодом в основном благодаря термоэлектронной или электростатической эмиссии.
[ ГОСТ 13820-77]
дуговой разряд
-
[Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]Тематики
EN
электрическая дуга
-
[Интент]EN
(electric) arc
self-maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission
[IEV ref 121-13-12]FR
arc (électrique), m
conduction gazeuse autonome dans laquelle la plupart des porteurs de charge sont des électrons produits par émission électronique primaire
[IEV ref 121-13-12]-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
[ ГОСТ Р 50571. 4-94 ( МЭК 364-4-42-80)] -
Средства индивидуальной защиты от теплового воздействия электрической дуги...
[Технический регламент о безопасности средств индивидуальной защиты] -
Опасное и вредное воздействия на людей электрического тока, электрической дуги и электромагнитных полей проявляются в виде электротравм и профессиональных заболеваний.
[ ГОСТ 12.1.019-79] -
сопротивление электрической дуги в месте КЗ
[ ГОСТ 28249-93 ] -
... способствовать гашению электрической дуги
-
Аппараты управления, имеющие электрическую дугу на силовых контактах при
нормальной работе ( пускатели, станции управления), должны проходить испытания при коммутации нагрузки.
[ ГОСТ Р 51330.20-99]
An electric arc is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air. A synonym is arc discharge. An arc discharge is characterized by a lower voltage than a glow discharge, and relies on thermionic emission of electrons from the electrodes supporting the arc. The phenomenon was first described by Vasily V. Petrov, a Russian scientist who discovered it in 1802. An archaic term is voltaic arc as used in the phrase " voltaic arc lamp".
[http://en.wikipedia.org/wiki/Electric_arc]Параллельные тексты EN-RU
In the last years a lot of users have underlined the question of safety in electrical assemblies with reference to one of the most severe and destructive electrophysical phenomenon: the electric arc.
[ABB]В последние годы многие потребители обращают особое внимание на безопасность НКУ, связанную с чрезвычайно разрушительным и наиболее жестко действующим электрофизическим явлением - электрической дугой.
[Перевод Интент]Тематики
- электротехника, основные понятия
Действия
Сопутствующие термины
EN
DE
- elektrischer Lichtbogen, m
- Lichtbogen, m
FR
Англо-русский словарь нормативно-технической терминологии > voltaic arc
-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
-
13 electric arc phenomenon
явление электрической дуги
-
[Интент]Параллельные тексты EN-RU
Electric arc phenomenon
The electric arc is a phenomenon which takes place as a consequence of a discharge which occurs when the voltage between two points exceeds the insulating strength limit of the interposed gas; then, in the presence of suitable conditions, a plasma is generated which carries the electric current till the opening of the protective device on the supply side.
Gases, which are good insulating means under normal conditions, may become current conductors in consequence of a change in their chemical-physical properties due to a temperature rise or to other external factors.
To understand how an electrical arc originates, reference can be made to what happens when a circuit opens or closes.
During the opening phase of an electric circuit the contacts of the protective device start to separate thus offering to the current a gradually decreasing section; therefore the current meets growing resistance with a consequent rise in the temperature.
As soon as the contacts start to separate, the voltage applied to the circuit exceeds the dielectric strength of the air, causing its perforation through a discharge.
The high temperature causes the ionization of the surrounding air which keeps the current circulating in the form of electrical arc. Besides thermal ionization, there is also an electron emission from the cathode due to the thermionic effect; the ions formed in the gas due to the very high temperature are accelerated by the electric field, strike the cathode, release energy in the collision thus causing a localized heating which generates electron emission.
The electrical arc lasts till the voltage at its ends supplies the energy sufficient to compensate for the quantity of heat dissipated and to maintain the suitable conditions of temperature. If the arc is elongated and cooled, the conditions necessary for its maintenance lack and it extinguishes.
Analogously, an arc can originate also as a consequence of a short-circuit between phases. A short-circuit is a low impedance connection between two conductors at different voltages.
The conducting element which constitutes the low impedance connection (e.g. a metallic tool forgotten on the busbars inside the enclosure, a wrong wiring or a body of an animal entered inside the enclosure), subject to the difference of potential is passed through by a current of generally high value, depending on the characteristics of the circuit.
The flow of the high fault current causes the overheating of the cables or of the circuit busbars, up to the melting of the conductors of lower section; as soon as the conductor melts, analogous conditions to those present during the circuit opening arise. At that point an arc starts which lasts either till the protective devices intervene or till the conditions necessary for its stability subsist.
The electric arc is characterized by an intense ionization of the gaseous means, by reduced drops of the anodic and cathodic voltage (10 V and 40 V respectively), by high or very high current density in the middle of the column (of the order of 102-103 up to 107 A/cm2), by very high temperatures (thousands of °C) always in the middle of the current column and – in low voltage - by a distance between the ends variable from some microns to some centimeters.
[ABB]Явление электрической дуги
Электрическая дуга между двумя электродами в газе представляет собой физическое явление, возникающее в тот момент, когда напряжения между двумя электродами превышает значение электрической прочности изоляции данного газа.
При наличии подходящих условий образуется плазма, по которой протекает электрический ток. Ток будет протекать до тех пор, пока на стороне электропитания не сработает защитное устройство.
Газы, являющиеся хорошим изолятором, при нормальных условиях, могут стать проводником в результате изменения их физико-химических свойств, которые могут произойти вследствие увеличения температуры или в результате воздействия каких-либо иных внешних факторов.
Для того чтобы понять механизм возникновения электрической дуги, следует рассмотреть, что происходит при размыкании или замыкании электрической цепи.
При размыкании электрической цепи контакты защитного устройства начинают расходиться, в результате чего постепенно уменьшается сечение контактной поверхности, через которую протекает ток.
Сопротивление электрической цепи возрастает, что приводит к увеличению температуры.
Как только контакты начнут отходить один от другого, приложенное напряжение превысит электрическую прочность воздуха, что вызовет электрический пробой.
Высокая температура приведет к ионизации воздуха, которая обеспечит протекание электрического тока по проводнику, представляющему собой электрическую дугу. Кроме термической ионизации молекул воздуха происходит также эмиссия электронов с катода, вызванная термоэлектронным эффектом. Образующиеся под воздействием очень высокой температуры ионы ускоряются в электрическом поле и бомбардируют катод. Высвобождающаяся, в результате столкновения энергия, вызывает локальный нагрев, который, в свою очередь, приводит к эмиссии электронов.
Электрическая дуга длится до тех пор, пока напряжение на ее концах обеспечивает поступление энергии, достаточной для компенсации выделяющегося тепла и для сохранения условий поддержания высокой температуры. Если дуга вытягивается и охлаждается, то условия, необходимые для ее поддержания, исчезают и дуга гаснет.
Аналогичным образом возникает дуга в результате короткого замыкания электрической цепи. Короткое замыкание представляет собой низкоомное соединение двух проводников, находящихся под разными потенциалами.
Проводящий элемент с малым сопротивлением, например, металлический инструмент, забытый на шинах внутри комплектного устройства, ошибка в электромонтаже или тело животного, случайно попавшего в комплектное устройство, может соединить элементы, находящиеся под разными потенциалами, в результате чего через низкоомное соединение потечет электрический ток, значение которого определяется параметрами образовавшейся короткозамкнутой цепи.
Протекание большого тока короткого замыкания вызывает перегрев кабелей или шин, который может привести к расплавлению проводников с меньшим сечением. Как только проводник расплавится, возникает ситуация, аналогичная размыканию электрической цепи. Т. е. в момент размыкания возникает дуга, которая длится либо до срабатывания защитного устройства, либо до тех пор, пока существуют условия, обеспечивающие её стабильность.
Электрическая дуга характеризуется интенсивной ионизацией газов, что приводит к падению анодного и катодного напряжений (на 10 и 40 В соответственно), высокой или очень высокой плотностью тока в середине плазменного шнура (от 102-103 до 107 А/см2), очень высокой температурой (сотни градусов Цельсия) всегда в середине плазменного шнура и низкому падению напряжения при расстоянии между концами дуги от нескольких микрон до нескольких сантиметров.
[Перевод Интент]Тематики
- НКУ (шкафы, пульты,...)
EN
Англо-русский словарь нормативно-технической терминологии > electric arc phenomenon
-
14 elektrischer Lichtbogen, m
электрическая дуга
-
[Интент]EN
(electric) arc
self-maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission
[IEV ref 121-13-12]FR
arc (électrique), m
conduction gazeuse autonome dans laquelle la plupart des porteurs de charge sont des électrons produits par émission électronique primaire
[IEV ref 121-13-12]-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
[ ГОСТ Р 50571. 4-94 ( МЭК 364-4-42-80)] -
Средства индивидуальной защиты от теплового воздействия электрической дуги...
[Технический регламент о безопасности средств индивидуальной защиты] -
Опасное и вредное воздействия на людей электрического тока, электрической дуги и электромагнитных полей проявляются в виде электротравм и профессиональных заболеваний.
[ ГОСТ 12.1.019-79] -
сопротивление электрической дуги в месте КЗ
[ ГОСТ 28249-93 ] -
... способствовать гашению электрической дуги
-
Аппараты управления, имеющие электрическую дугу на силовых контактах при
нормальной работе ( пускатели, станции управления), должны проходить испытания при коммутации нагрузки.
[ ГОСТ Р 51330.20-99]
An electric arc is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air. A synonym is arc discharge. An arc discharge is characterized by a lower voltage than a glow discharge, and relies on thermionic emission of electrons from the electrodes supporting the arc. The phenomenon was first described by Vasily V. Petrov, a Russian scientist who discovered it in 1802. An archaic term is voltaic arc as used in the phrase " voltaic arc lamp".
[http://en.wikipedia.org/wiki/Electric_arc]Параллельные тексты EN-RU
In the last years a lot of users have underlined the question of safety in electrical assemblies with reference to one of the most severe and destructive electrophysical phenomenon: the electric arc.
[ABB]В последние годы многие потребители обращают особое внимание на безопасность НКУ, связанную с чрезвычайно разрушительным и наиболее жестко действующим электрофизическим явлением - электрической дугой.
[Перевод Интент]Тематики
- электротехника, основные понятия
Действия
Сопутствующие термины
EN
DE
- elektrischer Lichtbogen, m
- Lichtbogen, m
FR
Немецко-русский словарь нормативно-технической терминологии > elektrischer Lichtbogen, m
-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
-
15 Lichtbogen, m
электрическая дуга
-
[Интент]EN
(electric) arc
self-maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission
[IEV ref 121-13-12]FR
arc (électrique), m
conduction gazeuse autonome dans laquelle la plupart des porteurs de charge sont des électrons produits par émission électronique primaire
[IEV ref 121-13-12]-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
[ ГОСТ Р 50571. 4-94 ( МЭК 364-4-42-80)] -
Средства индивидуальной защиты от теплового воздействия электрической дуги...
[Технический регламент о безопасности средств индивидуальной защиты] -
Опасное и вредное воздействия на людей электрического тока, электрической дуги и электромагнитных полей проявляются в виде электротравм и профессиональных заболеваний.
[ ГОСТ 12.1.019-79] -
сопротивление электрической дуги в месте КЗ
[ ГОСТ 28249-93 ] -
... способствовать гашению электрической дуги
-
Аппараты управления, имеющие электрическую дугу на силовых контактах при
нормальной работе ( пускатели, станции управления), должны проходить испытания при коммутации нагрузки.
[ ГОСТ Р 51330.20-99]
An electric arc is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air. A synonym is arc discharge. An arc discharge is characterized by a lower voltage than a glow discharge, and relies on thermionic emission of electrons from the electrodes supporting the arc. The phenomenon was first described by Vasily V. Petrov, a Russian scientist who discovered it in 1802. An archaic term is voltaic arc as used in the phrase " voltaic arc lamp".
[http://en.wikipedia.org/wiki/Electric_arc]Параллельные тексты EN-RU
In the last years a lot of users have underlined the question of safety in electrical assemblies with reference to one of the most severe and destructive electrophysical phenomenon: the electric arc.
[ABB]В последние годы многие потребители обращают особое внимание на безопасность НКУ, связанную с чрезвычайно разрушительным и наиболее жестко действующим электрофизическим явлением - электрической дугой.
[Перевод Интент]Тематики
- электротехника, основные понятия
Действия
Сопутствующие термины
EN
DE
- elektrischer Lichtbogen, m
- Lichtbogen, m
FR
Немецко-русский словарь нормативно-технической терминологии > Lichtbogen, m
-
Материалы, стойкие к воздействию электрической дуги, используемые в качестве защитных средств, должны быть несгораемыми, иметь низкую теплопроводность и достаточную толщину для обеспечения механической стойкости.
-
16 rectifier
= rect1) выпрямитель2) пп диод•- asymmetric silicon-controlled rectifier
- avalanche rectifier
- avalanche silicon-controlled rectifier
- barrier-film rectifier
- barrier-layer rectifier
- barrier-level rectifier
- battery-charger rectifier
- bias rectifier
- biphase rectifier
- blocking-layer rectifier
- bridge rectifier
- cascade rectifier
- charging rectifier
- chemical rectifier
- cold-cathode rectifier
- contact rectifier
- controlled rectifier
- controlled avalanche rectifier
- controlled mercury-arc rectifier
- copper-oxide rectifier
- copper-sulfide rectifier
- crystal rectifier
- diffused-junction rectifier
- diode rectifier
- dry-disk rectifier
- dry-plate rectifier
- electrolytic rectifier
- electronic rectifier
- fast rectifier
- forward-biased rectifier
- full-wave rectifier
- gas-filled rectifier
- gate-controlled rectifier
- gate-turnoff silicon-controlled rectifier
- germanium rectifier
- glow-discharge rectifier
- glow-tube rectifier
- Gratz rectifier
- grid-controlled rectifier
- grid-controlled mercury-arc rectifier
- GTO silicon-controlled rectifier
- half-wave rectifier
- high-current rectifier
- high-vacuum rectifier
- high-voltage rectifier
- hot-cathode rectifier
- ignitron rectifier
- iron-selenium rectifier
- junction rectifier
- light-activated silicon-controlled rectifier
- linear rectifier
- magnesium-copper sulfide rectifier
- magnitude-controlled rectifier
- mechanical rectifier
- mercury-arc rectifier
- mercury-vapor rectifier
- metallic rectifier
- n-type crystal rectifier
- pendulum rectifier
- planar silicon-controlled rectifier
- point-contact rectifier
- polyphase rectifier
- pool-cathode mercury-arc rectifier
- power rectifier
- p-type crystal rectifier
- punch-through rectifier
- reverse-biased rectifier
- selenium rectifier
- semiconductor rectifier
- silicon rectifier
- silicon-controlled rectifier
- single-phase rectifier
- solid electrolytic rectifier
- tantalum rectifier
- thermionic rectifier
- three-phase rectifier
- thyratron rectifier
- thyristor rectifier
- tungar rectifier
- vacuum-tube rectifier
- vapor rectifier
- vibrating-reed rectifier
- vibrator rectifier
- voltage-doubler rectifier
- voltage-multiplier rectifier -
17 rectifier
1) выпрямитель2) пп. диод•- asymmetric silicon-controlled rectifier
- avalanche rectifier
- avalanche silicon-controlled rectifier
- barrier-film rectifier
- barrier-layer rectifier
- barrier-level rectifier
- battery-charger rectifier
- bias rectifier
- biphase rectifier
- blocking-layer rectifier
- bridge rectifier
- cascade rectifier
- charging rectifier
- chemical rectifier
- cold-cathode rectifier
- contact rectifier
- controlled avalanche rectifier
- controlled mercury-arc rectifier
- controlled rectifier
- copper-oxide rectifier
- copper-sulfide rectifier
- crystal rectifier
- diffused-junction rectifier
- diode rectifier
- dry-disk rectifier
- dry-plate rectifier
- electrolytic rectifier
- electronic rectifier
- fast rectifier
- forward-biased rectifier
- full-wave rectifier
- gas-filled rectifier
- gate-controlled rectifier
- gate-turnoff silicon-controlled rectifier
- germanium rectifier
- glow-discharge rectifier
- glow-tube rectifier
- Gratz rectifier
- grid-controlled mercury-arc rectifier
- grid-controlled rectifier
- GTO silicon-controlled rectifier
- half-wave rectifier
- high-current rectifier
- high-vacuum rectifier
- high-voltage rectifier
- hot-cathode rectifier
- ignitron rectifier
- iron-selenium rectifier
- junction rectifier
- light-activated silicon-controlled rectifier
- linear rectifier
- magnesium-copper sulfide rectifier
- magnitude-controlled rectifier
- mechanical rectifier
- mercury-arc rectifier
- mercury-vapor rectifier
- metallic rectifier
- n-type crystal rectifier
- pendulum rectifier
- planar silicon-controlled rectifier
- point-contact rectifier
- polyphase rectifier
- pool-cathode mercury-arc rectifier
- power rectifier
- p-type crystal rectifier
- punch-through rectifier
- reverse-biased rectifier
- selenium rectifier
- semiconductor rectifier
- silicon rectifier
- silicon-controlled rectifier
- single-phase rectifier
- solid electrolytic rectifier
- tantalum rectifier
- thermionic rectifier
- three-phase rectifier
- thyratron rectifier
- thyristor rectifier
- tungar rectifier
- vacuum-tube rectifier
- vapor rectifier
- vibrating-reed rectifier
- vibrator rectifier
- voltage-doubler rectifier
- voltage-multiplier rectifierThe New English-Russian Dictionary of Radio-electronics > rectifier
-
18 rectifier
2) бтх, электрон. выпрямитель, выпрямительное устройство•-
accumulator rectifier
-
arc rectifier
-
barrier-layer rectifier
-
bias rectifier
-
biphase rectifier
-
blocking-layer rectifier
-
bridges-circuit rectifier
-
bridges rectifier
-
cascaded rectifier
-
cascade rectifier
-
charging rectifier
-
chemical rectifier
-
cold-cathode rectifier
-
copper-oxide rectifier
-
copper rectifier
-
crystal rectifier
-
diametric rectifier
-
diffused-junction rectifier
-
diode rectifier
-
discharge-tube rectifier
-
double-way rectifier
-
electrolytic rectifier
-
electronic rectifier
-
end-cell rectifier
-
full-wave rectifier
- gas-filled tube rectifier -
gas-filled rectifier
-
gate-controlled rectifier
-
germanium rectifier
-
grid-controlled mercury-arc rectifier
-
half-wave rectifier
-
high-current rectifier
-
high-vacuum rectifier
-
light-activated silicon controlled rectifier
-
linear rectifier
-
mechanical rectifier
-
mercury-arc rectifier
-
mercury rectifier
-
oil rectifier
-
operational rectifier
-
peak rectifier
-
phase-controlled rectifier
-
point-contact rectifier
-
point rectifier
-
polyphase rectifier
-
pool mercury-arc rectifier
-
pool rectifier
-
power rectifier
-
regulated-power rectifier
-
regulated rectifier
-
selenium rectifier
-
semiconductor rectifier
-
sheet rectifier
-
signal rectifier
-
silicon rectifier
-
silicon-controlled rectifier
-
single-phase rectifier
-
thermionic rectifier
-
three-phase bridge rectifier
-
three-phase rectifier
-
thyristor rectifier
-
track rectifier
-
vacuum-tube rectifier
-
vapor rectifier -
19 rectifier
1) выпрямитель
2) выпрямительный
3) выпрямляющее устройство
4) ректификатор
5) вентиль
6) газоотделитель
– alloyed rectifier
– avalanche rectifier
– averaging rectifier
– barrier-layer rectifier
– bias rectifier
– center-tap rectifier
– chemotronic rectifier
– cold-cathode rectifier
– controlled rectifier
– copper-oxide rectifier
– diode rectifier
– direction rectifier
– dry rectifier
– dry-disk rectifier
– electrolytic rectifier
– feedback-regulated rectifier
– full-wave rectifier
– gas-discharge rectifier
– germanium rectifier
– glow-discharge rectifier
– Gratz rectifier
– half-wave rectifier
– heavy-duty rectifier
– linear rectifier
– magnetic rectifier
– mechanical rectifier
– mercury-arc rectifier
– metal rectifier
– metal-oxide rectifier
– monitoring rectifier
– p-n-junction rectifier
– phase-sensitive rectifier
– plate-supply rectifier
– power rectifier
– pulsed rectifier
– rectifier ammeter
– rectifier diode
– rectifier drive
– rectifier instrument
– rectifier valve
– rectifier voltmeter
– reed-type rectifier
– regulated rectifier
– semiconductor rectifier
– silicon rectifier
– single-phase rectifier
– superconductor rectifier
– tank rectifier
– thermionic rectifier
– thin-film rectifier
– three-phase rectifier
– thyratron rectifier
– thyristor rectifier
– titanium-dioxide rectifier
– track rectifier
– vibrating rectifier
– voltage-doubler rectifier
– voltage-quadrupler rectifier
copper oxide rectifier — выпрямитель купроксный, выпрямитель меднозакисный
glass-bulb mercury-arc rectifier — стеклянный ртутный вентиль
high-voltage rectifier kenotron — выпрямительный высоковольтный кенотрон
mercury-arc grid-controlled rectifier — < radio> мутатор
semiconductor rectifier assembly — выпрямительный полупроводниковый блок
semiconductor rectifier diode — выпрямительный полупроводниковый диод
semiconductor rectifier stack — выпрямительный полупроводниковый столб
silicon controled rectifier — тиристор не проводящий в обратном направлении, несимметричный тиристор
silicon controlled rectifier — управляемый кремниевый вентиль
single-anode rectifier tube — одноанодная выпрямительная лампа
surface contact rectifier — вентиль с поверхностным контактом
tantalum electrolytic rectifier — танталовый электролитический вентил
-
20 valve
затвор
– actuator valve
– air bleed valve
– air valve
– air-admission valve
– angle valve
– balanced valve
– bang-bang valve
– bleeding valve
– blow-off valve
– brake valve
– butterfly valve
– butterfly-type valve
– by-pass valve
– bypass valve
– cam lifts the valve
– check valve
– chimney valve
– clack valve
– coupled valve
– cutoff valve
– diaphragm valve
– direct-acting valve
– discharge valve
– distribution valve
– double-seated valve
– drain valve
– drop valve
– dry back-pressure valve
– dump valve
– emergency valve
– equalizing valve
– exhaust valve
– expansion valve
– figure-of-merit of valve
– flanged valve
– flood valve
– four-way valve
– fuel valve
– gate valve
– globe valve
– grid valve
– grind a valve
– hot-cathode valve
– inhalation valve
– inlet valve
– jet-pipe valve
– kingston valve
– low-lift valve
– maneuvering valve
– mercury-arc valve
– metering valve
– motorized valve
– mud valve
– multi-way valve
– multielectrode valve
– multiway valve
– needle valve
– overload valve
– pilot valve
– pitted valve
– plug valve
– plunger valve
– poppet valve
– power valve
– pressure-operated valve
– pressure-relief valve
– propellant-control valve
– quick-acting valve
– rectifier valve
– reducing valve
– reface a valve
– release valve
– relief valve
– rotary valve
– safety valve
– selector valve
– shut-off valve
– single-seated valve
– single-stage valve
– slide valve
– spring-and-ball valve
– starting valve
– steam-admission valve
– step valve
– sticking of valve
– stop valve
– straightway valve
– suction valve
– swing valve
– swinging valve
– tempering air valve
– three-way valve
– throttle valve
– throttling valve
– tuyere valve
– two-electrode valve
– two-stage valve
– two-way valve
– valve accelerometer
– valve actuator
– valve body
– valve bounce
– valve box
– valve burns
– valve cage
– valve cap
– valve chamber
– valve chatters
– valve closing
– valve cup
– valve diameter
– valve fouling
– valve gas
– valve gear
– valve grinder
– valve grinding
– valve head
– valve holder
– valve lag
– valve lift
– valve needle
– valve opening
– valve passage
– valve plate
– valve port
– valve reclamation
– valve remover
– valve rocker
– valve rod
– valve seat
– valve shaft
– valve spindle
– valve spring
– valve tappet
– valve tube
– valve wavemeter
– valve wrench
– vent valve
– welding-end valve
liquid-flow throttling valve — переменный гидравлический дроссель
main isolating valve — <engin.> задвижка напорная главная
non-rising-stem gate valve — задвижка с невыдвижным шпинделем
poppet valve head — <engin.> тарель
pressure regulator valve — <engin.> золотник регулятора давления
safety regulator valve — <engin.> золотник регулятора безопасности
См. также в других словарях:
Thermionic converter — A thermionic converter consists of a hot electrode which thermionically emits electrons over a potential energy barrier to a cooler electrode, producing a useful electric power output. Caesium vapor is used to optimize the electrode work… … Wikipedia
Vacuum arc — A vacuum arc can arise when the surfaces of metal electrodes in contact with a good vacuum begin to emit electrons either through heating (thermionic emission) or via an electric field that is sufficient to cause field emission. Once initiated, a … Wikipedia
термоионная дуга — термический дуговой разряд — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы термический дуговой разряд EN… … Справочник технического переводчика
Vacuum tube — This article is about the electronic device. For experiments in an evacuated pipe, see free fall. For the transport system, see pneumatic tube. Modern vacuum tubes, mostly miniature style In electronics, a vacuum tube, electron tube (in North… … Wikipedia
Transmission electron microscopy — A TEM image of the polio virus. The polio virus is 30 nm in size.[1] Transmission electron microscopy (TEM) is a microscopy technique whereby a beam of electrons is transmitted through an ultra thin specimen, interacting with the specimen as it… … Wikipedia
Fluorescent lamp — A fluorescent lamp or fluorescent tube is a gas discharge lamp that uses electricity to excite mercury vapor. The excited mercury atoms produce short wave ultraviolet light that then causes a phosphor to fluoresce, producing visible light.Unlike… … Wikipedia
Cold cathode — This article is about light sources and indicators. For cold cathode ion sources, see Ion source. CCFL redirects here. For other uses, see CCFL (disambiguation). Cold cathode fluorescent lamp A cold cathode is a cathode used within nixie tubes,… … Wikipedia
Diode — Figure 1: Closeup of a diode, showing the square shaped semiconductor crystal (black object on left) … Wikipedia
Electric current — Electromagnetism … Wikipedia
Electrical conduction — is the movement of electrically charged particles through a transmission medium (electrical conductor). The movement of charge constitutes an electric current. The charge transport may result as a response to an electric field, or as a result of… … Wikipedia
John Ambrose Fleming — Infobox Scientist name = Sir J. Ambrose Fleming caption = birth name = John Ambrose Fleming birth date = birth date|1849|11|29|mf=y birth place = Lancaster, Lancashire, England death date = death date and age|1945|4|18|1849|11|29|mf=y death place … Wikipedia